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A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid

mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator

using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute

interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describ-

ing the kinetics of dissolved ion species, is solved using a finite difference discretization based on

the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics

and electrokinetics through appropriate boundary conditions. We present the first full integration of

these three elements. The model is validated by comparing with known analytic solutions of ionic

distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of

colloidal suspensions. Its possibilities are explored by considering various physical systems, such as

breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid

interfaces. Published by AIP Publishing. https://doi.org/10.1063/1.5020377

I. INTRODUCTION

Electrokinetic phenomena play a fundamental role in both

technological and natural systems, from micro- and nanoflu-

idic devices to molecular biological processes.1–3 Their phys-

ical description has proven challenging mainly due to the

wide range of relevant length-scales involved, from interfacial

effects, molecular in origin and thus typically on the nanoscale,

to the colloidal and system sizes, usually several orders of mag-

nitude larger. An additional significant challenge is to capture

the competing effects of two long-range interactions, namely,

hydrodynamic and electrostatic. These same factors also com-

plicate the realization of experiments as it is, for example,

challenging to resolve the charge distribution at solid-fluid

or fluid-fluid interfaces, especially at the nanoscale.4 In this

context, numerical simulations become an attractive alterna-

tive to explore those limits where theory and experiments

struggle.

Simulations of electrohydrodynamic phenomena vary sig-

nificantly in methodology, also as a consequence of the wide

range of relevant scales. The most common models directly

solve the Taylor-Melcher leaky dielectric model, based on the

assumption that charge is confined at interfaces in bound-

aries of negligible length, that is, that the Debye length is

small compared to other relevant length-scales.5,6 These are,

essentially, macroscopic models and simulations, which ignore

the kinetics of the ions and volumetric ionic concentrations.

On the opposite side of the spectrum, nanoscale electroki-

netic problems, increasing in popularity together with the

development of nanofluidics, makes full Molecular Dynam-

ics (MD) simulations a viable alternative for studying elec-

trokinetic phenomena.7,8 Between these two methods lies a

variety of mesoscopic models which permit the simulation of

larger time and length-scales than MD, while also resolving

the kinetics and spatial distribution of ions. Hydrodynamics

can be resolved by mesoscale particle-based methods, such

as multi-particle collision dynamics, drastically reducing the

number of particles needed compared to full-MD studies.9–12

Another common approach involves the solution of Navier-

Stokes equations using standard Computational Fluid Dynam-

ics (CFD) techniques, coupled to molecular dynamics for

resolving either charged colloids and/or individual ions.13 Full

mesoscopic models, which allow the simulation of even longer

time scales and a wider range of salt concentrations, treat both

the solvents and the ions—through ionic concentrations—at

the continuum level. These are usually based on the Nernst-

Planck advection-diffusion equation as a model for ion trans-

port, which requires the solution of the Poisson equation to

determine the electric field, comprising a system of equa-

tions usually referred to as Poisson-Nernst-Planck (PNP)

theory.14

In the following, we present a numerical solution of

an electrohydrodynamic mesoscopic model of colloidal sus-

pensions in binary fluid mixtures with dissolved ions. We

focus on nanoscale flows of negligible inertia and compa-

rable electronic, hydrodynamic, and colloidal scales. The

model considers the ions (solutes) and the fluids (solvents)

at the macroscopic level, described by continuous fields of
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ion concentrations, mass densities, and velocities, respec-

tively. The finite-sized colloids are coupled to the fluids and

the ions through proper boundary conditions. The simula-

tion methodology recovers the hydrodynamics by means of

the lattice Boltzmann method (LBM),15 and the ion kinet-

ics via a finite difference discretization of the Nernst-Planck

equation, inspired by the link-flux method.14 Previous LB-

based electrohydrodynamic models for binary mixtures have

used a free-energy functional16 to derive the ion kinetics

and the forces that the ions exert on the fluids, as well as

the interactions between the different fluids.14,17,18 Here we

present a different approach, deriving the diffusive ion fluxes

via the forces exerted on them and recovering the coupling

forces from solvent-solvent and solvent-solute microscopic

interactions using pseudopotentials of the form proposed by

Shan and Chen.19,20 The colloidal particles’ coupling with

the binary mixture is implemented using the Ladd method-

ology,21 extended to binary mixtures.22,23 Particles interact

between themselves via a Hertz potential when in contact, as

also via a lubrication force.21,22 Finally, particle-ion interac-

tions are resolved using a partial-volume discretization that

reduces discretization errors, as recently proposed by Kuron

et al.24 Overall this presents the first description of a model

capable of handling the electrokinetics of both binary fluid

mixtures and moving particles.

The model is validated by comparing with known theoret-

ical results in several systems encompassing all the method’s

functionalities. We obtain excellent agreement for dielectric

droplet deformation due to Maxwell stresses and distribution

of ions at fluid/fluid interfaces. The electrophoretic mobility

of colloidal suspensions is also in agreement with previous

simulations and experiments. We also show exemplary cases

of the possibilities of the model, such as transient dynamics

and breakage of droplets in various conditions, colloid wet-

ting properties at fluid/fluid interfaces, and the dynamics of

colloid-coated droplets.

The paper is structured as follows: in Sec. II, we first

describe the hydrodynamic (Sec. II A) and electrokinetic

(Sec. II B) equations, then the interactions between the dif-

ferent species (Sec. II C), the Poisson’s equation (Sec. II D),

and finally the colloidal dynamics (Sec. II E), each followed

by a description of its numerical solution. Section III is dedi-

cated to the study of several systems of increasing complexity,

for validation of the model and presentation of the simulation

capabilities. Finally conclusions and possible future directions

are discussed in Sec. IV.

II. ELECTROKINETIC MODEL

A. Hydrodynamics

The lattice Boltzmann method is used to solve two

Boltzmann equations with a Bhatnagar-Gross-Krook (BGK)

collisional operator,25

(

∂

∂t
+ ξσ · ∇x +ΦσB · ∇ξ

)

f σ =
1

τ

(

f̃ σ − f σ
)

, (1)

where f σ(r, ξσ , t) is the probability distribution function for

component σ ∈ (a, b) with particle velocity ξσ , τ is the

relaxation time (the time scale for collisions to drive the local

distributions to thermodynamic equilibrium), taken to be equal

for both fluids,Φσ
B

is the external force, and f̃ σ(r, ξσ , t) is the

local equilibrium distribution function. The macroscopic den-

sity and the average macroscopic momentum are recovered via

ρσ = ∫ f σdξ and ρσuσ = ∫ ξσf σdξ , with uσ being the com-

ponent macroscopic velocity. When taking the equilibrium

distribution as

f̃ σ(x, v, t) = ρσ
(

ρσ

2πp

)3/2

exp

(

−p(vσ)2

2ρσ

)

, (2)

where vσ = ξσ � u, with u being the barycentric veloc-

ity and p being the pressure, it is known that following the

Chapman-Enskog procedure with the Knudsen number as

small parameter, the Navier-Stokes equations are recovered,

namely,

∂ρσ

∂t
+ ∇ · (ρσu) = 0, (3)

∂(ρσu)

∂t
+ ∇ · (ρσu ⊗ u) = −∇ · (pI) + ∇ · sσ + Fσ . (4)

Here ⊗ is the outer product, p is the pressure, I is the iden-

tity matrix, and s is the deviatoric stress tensor, sσ = λσ

(∇ · u)I + ησ(∇u + ∇uT ), with η being the dynamic vis-

cosity and λ being the bulk viscosity. The forcing term

Fσ has two main contributions, coming from interactions

between components and electrostatic forces, Fσ ≡ Fσ
I

+ Fσ
E ;

both of these terms are derived further down. As the nano-

scale is much smaller than the capillary length, gravity is

disregarded.

The LBM consists in the discretization of Eq. (1) in space,

time, and velocities such that at a given time step t and at each

site of a regular Cartesian lattice ri, the distribution function

f σ(r, u, t) becomes f σ
d

(ri, t), with d being the index of the

discrete velocity vectors cd .26 Here, we use the usual D3Q19

lattice15,26 with spacing ∆x such that particles can travel at

each time step ∆t to the nearest and next-nearest neighbors.

Thus Eq. (1) can be written as

f σd (ri + cd∆t, t +∆t)−f σd (ri, t) =
∆t

τ

(

f̃ σd (ri, t) − f σd (ri, t)
)

. (5)

Notice that we have not included the Φσ
B

term, as external

forces will be included as perturbations of the velocity in

the equilibrium distribution function f̃ σ , following Shan and

Chen.19 After discretization and expansion to second order,

Eq. (2) can be written as

f̃ σd = wd ρ
σ

[
1 +

cd · uσe
c2

s

+
(cd · uσe )2

2c4
s

− uσe · uσe
2c2

s

]
. (6)

The equilibrium velocity of each component is given by

uσe =
∑

σ ρ
σuσ/ρ + τΦσ/ρσ , with the individual velocities

uσ = (1/ρσ)
∑

d f σ
d

cd . The lattice weights for a D3Q19 lattice

are

wd =



1/3 if |cd | = 0,

1/18 if |cd | = ∆x/∆t,

1/36 if |cd | =
√

2(∆x/∆t).

(7)
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B. Electrokinetics

The cations and anions dispersed throughout the solvents

are considered at the continuum level. The evolution of the

concentration of each ion species is given by the advection-

diffusion Nernst-Planck equation,

∂n±

∂t
+ u · ∇n± = ∇ · j±, (8)

where n±(r) is the number density of cations (+) and anions

(�). The diffusive ion flux is

j± = D∇n± + DβF± (9)

with the diffusivity D (which we have assumed to be homo-

geneous and the same for both species), and β ≡ 1/kBT, with

the Boltzmann constant kB and the temperature T. Notice that

this temperature only serves as an energy scale, as we have

considered isothermal systems with no fluctuations. In all our

studies, we take β = 1 although for clarity, we keep the symbol

β where present.

The Nernst-Planck equation ignores ion-ion interactions.

These are known to be relevant at the nanoscale for moderate

ion concentrations, where steric and electric interactions can

alter the flow of ions.27–30 Therefore our model is strictly valid

for low ionic concentrations n±(r)≪ 1/∆x3.

The force density applied to the ions, F±(r), is coupled

to the flux through the Smoluchowski relation with mobil-

ity Dβ. This implies that the inertial time scale of the ions

is much faster than any other resolved time scale. There-

fore ions instantly reach their drift velocity as F±(r) varies,

their dynamics being dominated by the solvents’ viscosity.

The force has two contributions, electrostatic and a term com-

ing from the microscopic interactions between solvents and

solutes,

F± = q±∇φ − F±I , (10)

with q±(r) = z±en±(r), z± is the valence of cations and ions and

�e is the electron charge. In simulations, we take e as the unit

of charge, e = 1, although for clarity we keep the symbol in the

expressions. Furthermore, we only consider monovalent salts,

z± = ±1.

The total electric potential φ(r) is the sum of an internal

and external contribution φ(r) = φI (r) + φE(r), with the external

one usually being a parameter used to control the flow. Anal-

ogously, we define equivalent electric fields as E(r) = �∇φ(r)

= EI (r) + EE(r). The internal contribution is itself a function

of the charge distribution via Poisson’s equation,

∇ · (ε∇φI ) = −q, (11)

where we have defined the total charge density q(r)≡ e(z+n+(r)

+ z�n�(r)) + qp(r). Here qp(r) is the total charge from suspended

particles, as will be detailed further below.

The permittivity ε(r) = ε0εr(r), with ε0 being the vacuum

permittivity and εr(r) being the relative permittivity of the

solution, is not homogeneous, as each solvent and the colloidal

particles can have different permittivities. At each point, ε(r)

is either a function of the fluid concentration or the permittivity

of the particles such that

ε(r) =


εc(r) r inside the particle,

εf (r) r inside the fluid.
(12)

As the dependency of the fluid’s permittivity on the concentra-

tion of each fluid component is a priori unknown, we follow

Rotenberg et al.17 in taking the simplest model, a linear inter-

polation between the value of each fluid, εa and εb, as a

function of the local concentration,

εf (r) = 1
2

(

εa(1 − c(r)) + εb(1 + c(r))
)

, (13)

with c(r) ≡ (ρb(r) � ρa(r))/(ρa(r) + ρb(r)).

The Nernst-Planck equation (8) is numerically solved

using a finite difference scheme with different discretization

methods for the advective and diffusive terms, inspired by the

link-flux method.14,17 Integrating Eq. (8) over a lattice site

cell’s volume, which we assume to be always a cube of side

length ∆x, results in

n±(ri, t + ∆t) − n±(ri, t)

∆t
=

1

∆x

∑

d∈{Q6}

[−u(ri)n
±(ri+d/2)

+ j±(ri+d/2)
] · cd , (14)

where we have defined ri+d /2 ≡ ri + cd∆t/2. Here we take d

to run only over the D3Q7 lattice directions, as it simplifies

the discretization and improves performance. Note that in the

D3Q7 lattice, cd is equivalent to the normal of the surface of the

lattice cell in the d direction, which is always a square of area

∆x2. Previous research using the link-flux method has always

considered a D3Q19 lattice, both to have consistent discretiza-

tions for solutes and solvents and to reduce the spurious diffu-

sion produced by advection. Using the methodology detailed in

Ref. 14, we have measured that in our case, the effective diffu-

sivity stays well below a 2% difference with the nominal diffu-

sivity D, for the comparably low value used here D = 0.01, and

the largest possible fluid velocities. Previous researchers have

performed careful comparisons of the accuracy of different dif-

ferential operators, revealing that higher lattice connectivities

indeed increase the accuracy and convergence (as a function

of the resolution) although total errors are expected to be neg-

ligible in our cases of variations on the order of the diffusive

interface.31

For the advection terms, we use a first-order upwind

discretization such that

∑

d∈{Q6}
n±(ri+d/2)u(ri) · cd

=

∑

d∈{Q6}
H[u(ri) · cd]n±(ri)u(ri) · cd , (15)

with H[x] being the Heaviside function. For the diffusive flux,

we follow a different procedure than in Refs. 14 and 17, as

it has been recently shown that their proposed exponentia-

tion of the fluxes leads to a quadratic error for flows far from

equilibrium.32 We thus use a straightforward finite-difference

discretization for the gradients and a linear interpolation to

obtain the value of the fields at the volumes’ surfaces. This

has been shown to be more computationally efficient while

also reducing spurious fluxes.32 Denoting ri+d ≡ ri + cd∆t,
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Eq. (9) results in

j±(ri+d/2) = D

[(
n±(ri+d) − n±(ri)

∆x

)

cd

− β
(

q±(ri) + q±(ri+d)

2

) (

E(ri) + E(ri+d)

2

)

−F±I (ri+d/2)
]

. (16)

The form and discretization of the last term, the interaction

force, are given in what follows.

C. Couplings

Microscopic interactions between the different solvents

and solutes are modeled using the pseudopotential method of

Shan and Chen,19 which is among the most popular multi-

phase/multicomponent LB methods.33 It is usually preferred

to other alternatives due to its simplicity of implementation.

The method allows us to determine F±I (r) and Fσ
I

(r) in a con-

sistent manner. Microscopic molecular interactions between

species (either solvents or solutes) are captured as local force

densities of the form

Φ
α
I (ri ) = −ψα(ri )

∑

β,α

∑

d

Gαβwdψ
β(ri+d)cd∆t, (17)

with the indexes α, β ∈ {a, b, +, �}, α , β. As we have

neglected ion/ion interactions, we take the coupling constants

G+� = G
�+ = 0.

Let us first focus on fluid/fluid interactions, α, β ∈ {a, b}.

The coupling constant G ≡ Gab = Gba determines the strength

of attraction (G < 0) or repulsion (G > 0) between the solvents.

The pseudopotential ψσ(ri, t) is taken to have the common

form

ψσ(ri ) = ρ0

[

1 − exp(−ρσ(ri )/ρ0)
]

. (18)

The reference density is set to ρ0 = 1 although we leave the

symbol for clarity. In the continuum limit, and to fourth order

in derivatives, the Shan-Chen force (17) can be shown to be34

Fσ
If = −Gψσ

(

c2
s∆t2∇ψσ̃ +

c4
s∆t4

2
∇

(

∆ψσ̃
)

)

. (19)

This results in a modified equation of state19

p = c2
s ρ + c2

s∆t2Gψaψb, (20)

with the speed of sound cs = ∆x/
√

3∆t. It can thus be seen that

depending on the value of G, Eq. (20) leads to phase separation.

In this study, we always take G = 4.0∆t−2ρ−1
0

.

Next, we consider the case of fluid/ion microscopic inter-

actions, referred to as solvation. These are the cases α ∈ {a, b},

β ∈ {+, �} in Eq. (17). For the ionic pseudopotentials, we take

the same form as for the fluids although as n±(r)≪ 1/∆x3, they

can be simplified,

ψ±(ri) = n±0 (1 − exp(−n±(ri)/n
±
0 )) ≈ n±(ri) (21)

with the reference density n±
0
= 1/∆x3. It follows that, in

the continuum limit, the forces applied to the fluids from ion

interactions take the form

Fσ
Ii = −

∑

±
Ga±ψac2

s∆t2∇n±. (22)

We have here assumed, for simplicity, that Gb± = 0. This is

without loss of generality, as the coupling coefficients can

also be negative and thus hold the possibility of modeling

both attraction and repulsive forces from solvent a, the lat-

ter equivalent in our scheme to an attractive force to solvent

b.

Analogously, the forces applied to the ions from their

microscopic interaction with the fluids take the form

F±I = −Ga±c2
s∆t2n±∇ψa. (23)

In order to specify the value of Ga±, we interpret our

model of ion/solute microscopic interactions as an approxi-

mate model of solvation. Solvation interactions are captured

at the macroscopic level by chemical potentials, µ±s (r), cor-

responding to the cost in free energy of adding an ion to the

solvent or mixture. For example, in the most common case of

hydration (solvation in water), µ±s (r) is fundamentally a func-

tion of the hydrogen bonds formed between the ions and the

solvent molecules.35,36 Selective solvation in mixtures, when

there is a difference in the solvation energies between the two

solvents and solutes, can have crucial effects on the global

dynamics, as usually the associated energies far exceed kBT.36

Even though the solvation energies are known to depend on

several parameters, here we follow a similar approach as Onuki

et al.36 and take a simple form of a linear dependency with the

density of solvent a,

µ±s (ρa) = −∆µ
±

∆ρa
ρa(r). (24)

The parameter ∆µ± = µ±s ( ρ̄a
a)− µ±s ( ρ̄a

b
), commonly referred to

as Gibbs transfer energy,17 is the difference of the respective

solvation chemical potentials at the bulk of each component in

a phase-separated system. For example, in the case of a planar

interface at x = 0 between two immiscible fluids, ρ̄a
a = ρ

a(−∞)

and ρ̄a
b
= ρa(∞). Analogously ∆ρa ≡ ρ̄a

a − ρ̄a
b
.

Variations of chemical potentials translate to forces, given

by the Gibbs-Duhem relation (at constant temperature) f =�∇p

= ρ∇µρ. Therefore, variations in the solvation chemical poten-

tial generate a force of the form �(∆µ±/∆ρa)n±(r)∇ρa(r).

Comparing with Eq. (23) and noticing that for small densities

ψa ≈ ρa, it is evident that in order to interpret the pseudopo-

tential interactions as solvation effects, the Shan-Chen force

coupling parameter has to be taken as

Ga± =
∆µ±

∆ρac2
s∆t2

. (25)

Having determined the forces stemming from micro-

scopic molecular interactions between solvents and solutes,

two other forces’ rest to be considered. The first comes from

the relative movement of the ions with the respect to the sol-

vent and is given by a simple friction coupling between the

two, that is,

Fσ
Ij = −

kBT

D

∑

±
j±. (26)

The second remaining force has its origin on the dielec-

tric nature of the solvents. Polarization effects give rise to the

Kelvin force density, which assuming an isotropic permittiv-

ity takes the form FE(r) = − 1
2
E(r)2∇ε + 1

2
∇(E(r)2φ∂ε/∂φ).37

Using Eq. (13) gives

FE(r) = − 1
2
(ε(r) − ε̄)∇E(r)2, (27)
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with the average permittivity ε̄ = 1
2
(εa + εb). The Kelvin force

density is strictly valid in the electroquasistatic limit and for

incompressible media.38 The latter condition is fulfilled con-

sidering flows of low Mach number, Ma = u0/cs ≪ 1, with

u0 being the typical flow speed. The electroquasistatic limit

is satisfied for small ion fluxes, that is, D ≪ ∆x2/∆t. In what

follows, we always take D = 10�2
∆x2/∆t.

Notice that in Eq. (27), we have disregarded the electro-

static term of the Kelvin force density, as it has already been

included in Eq. (26). This is just a consequence of the macro-

scopic Lorentz force being simply the sum of the individual

ion contributions.

In summary, the external force term in the Navier-Stokes

equation (4) is given by

Fσ
= Fσ

If + Fσ
Ii + Fσ

Ij + Fσ
E . (28)

After some manipulation, and defining the total ionic con-

centration n(r) ≡ n+(r) + n�(r), Eq. (28) can be written

as

Fσ
= Fσ

If −
∇n

β
−

∑

±
∇ (

n±µ±s
)

+ qE − (ε − ε̄)

2
∇E2. (29)

Finally we present the discretization of the force terms.

The forces on the solvent due to microscopic interactions are

given by Eq. (17), with the already specified coupling constants

and pseudopotentials. For Eq. (26), we use the discretization

of the fluxes, Eq. (16), with

F±I (ri+d/2) = −∆µ
±

∆ρa

(

n±(ri) + n±(ri+d)

2

) (

ρa(ri+d) − ρa(ri)

∆x

)

cd .

(30)

Therefore, the total force included in the lattice Boltzmann

method is given by

Φ
σ(ri) = Φ

σ
I (ri) +

∑

d∈{Q6}
Fσ

Ij (ri+d/2) +

(

ε(r) − ε̄
4

)

E2(rn)cd .

(31)

D. Poisson equation

A significant challenge in the numerical implementation

of electrokinetic models is the efficient and accurate solution of

Poisson’s equation (11). φI(r) must be determined at each time

step from the charge distribution q(r) and the permittivity ε(r).

Here we use a standard Fourier spectral method, which allows

us to find a solution for the potential in O(G log(G)), where G

is the number of lattice sites. A significant advantage of this

method is the possibility of efficient parallelization. On the

other hand, boundary conditions on the electric potential can

be hard to implement although here we consider only periodic

systems.

One additional difficulty in our case comes from the space

dependent ε(r). In that case, the general Poisson equation (11)

has to be solved, which can be written as

∇2φI (r, t) = −q(r, t)/ε(r, t) − ∇ε(r, t) · ∇φI (r, t). (32)

As ε(r, t) is known, only the ∇φ term on the right presents a

problem. In order to decouple this term and be able to use the

standard discretization of the Poisson equation, we assume

a slowly varying potential such that φI (t) ∼ φI (t � ∆t), and

thus

∇2φI (r, t) = −q(r, t)/ε(r, t) − ∇ε(r, t) · ∇φI (r, t − ∆t). (33)

The condition of a slowly varying φI (r, t) is essentially

a demand for a slowly varying q(r, t), a condition already set

by the total electric force by assuming low Mach numbers

and diffusivities, which imply small advection and diffusion

of ions, respectively.

E. Colloidal dynamics

Having specified the model and numerical implementa-

tion for the hydrodynamics and ion kinetics, only the dynamics

of the colloidal particle rests to be determined. For simplicity,

we consider only spherical and rigid particles of radius rp.

Particles follow Newton’s equation of motion

Gj
= m

d2xj

dt2
, (34)

with j = 1, . . ., N being the particle index, N being the total

number of particles, m being the mass, xj being the position,

and Gj being the total force exerted on particle j. For simplicity,

we take all particles to have the same mass m = ρp(4/3)πr3
p ,

with ρp = 5ρ0, an arbitrary choice that has been seen to

have no influence on the results. The total force includes both

particle-particle and particle-fluid interactions, as well as an

electrostatic term,

Gj
= G

j

fl
+ G

j

lub
− Qj∇φ −

∑

j

∇V (xj, xk), (35)

with V (xj, xk) being the interaction potential between parti-

cles j and k, G
j

fl
being the force exerted on the particle by the

fluids, and G
j

lub
being the lubrication correction. Also present

is the force exerted by the electric field on the particle, which

is assumed to have a charge Qj homogeneously distributed

throughout its volume.

The interaction potential is given by the Hertzian model

∇V (xj, xk) = kHδ
3/2n̂jk , (36)

with the direction between particles’ centers n̂jk
= (xj − xk)/

| |xj − xk | | and δ being the overlap between the two particles,

δ = max{2rp � ||rj
� rk ||, 0}. We take the stiffness to be kH

= 1.0(m0∆t�2
∆x�1/2), although we see no influence of its value

in any of our considered system due to the small overlaps and

colloid volume fractions involved.

The lubrication force G
j

lub
models an observed repulsive

interaction between two particles approaching each other in a

fluid medium.21 It has its origin in strong pressure gradients

generated by the flow of fluid out of the gap between the parti-

cles as they approach each other. Here we follow the procedure

of Ladd and Verberg,21 including lubrication effects directly

as a force of the form

G
j

lub
= −

∑

k

3π

2
ησr2

p n̂jk
[
n̂jk · (vj − vk)

]

×
[
(| |xj − xk | | − 2rp)−1 − 1

]
, (37)

with the particle velocities vj = dxj/dt, and the sum over k runs

over all particles such that k , j and | |xj − xk | | − 2rp <
2
3
∆x.
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These two forces provide a simplified description of what

are in reality highly complex colloid/colloid interactions. A

more involved potential than Eq. (36) would be needed to

model the interactions at small distances, where van der Waals

and other intermolecular interactions are relevant. The deriva-

tion of the correct interaction potential at these scales is

not trivial. For example, the commonly used DLVO (after

Derjaguin, Landau, Verwey and Overbeek) potential is not

directly applicable, as the electrostatic interaction between

Debye layers is expected to be already resolved at large dis-

tances although not when the separation between the colloids

becomes small, ||rj
� rk || < ∆x. Moreover, a more general

description is needed for colloids at fluid interfaces, a topic

of active research.39–43 Finding a correction for electrostatic

interactions, analogous to Eq. (37), is suggested as a future

direction of research.

Finally, only the force resulting from the interaction

between fluids and colloid rests to be specified, G
j

fl
. This is

resolved by projecting the particles onto the lattice, marking

as solid the sites that are covered by the particle. The interac-

tion is then a consequence of the boundary conditions applied

to fluid advecting toward particle solid nodes. Furthermore, as

the particle moves, two other processes need to be specified:

the conversion of fluid sites to solid and the conversion of solid

sites to fluid. Figure 1 shows an illustration of these processes.

Fluid advecting onto particle solid sites is bounced-back

half way between the solid and the fluid sites, by setting

f σd (ri, t) = f σd∗ (ri, t + ∆t) − 1

6
ρσ(ri, t)vj · cd∗

∆t2

∆x2
, (38)

where cd = −cd∗ . The second term corresponds to a correction

that takes into account the particle movement.21,22,44 The force

density transferred to the particle from every bounce-back

collision is then

g
j

bb
(ri) =

1

∆t

(

2ρσ(ri) − 1

6
ρσ(ri)v

j · cd∗
∆t2

∆x2

)

cd∗ . (39)

When creating solid sites, as the particle moves and occu-

pies a new lattice site, the momentum of the fluid being covered

must be transferred to the particle, in order to ensure global

conservation of momentum. Therefore an additional term has

to be added to the particle,

g
j
c = −

ρσ(ri)u(ri)

∆t
. (40)

Moreover, in the last case of a particle uncovering a solid site,

new fluid is created from an equilibrium distribution with the

velocity of the particle at that site such that

f σd (ri, t) = ρ̄σ f̃ σc (vj(ri, t), ρ(ri, t)). (41)

The newly added density ρ̄σ corresponds to the average of the

neighboring sites,

ρ̄σ =
∑

d

ρσ(ri+d), (42)

where the sum runs over the sites’ neighbors. Correspondingly,

the final contribution to the total force on the particle is

g
j

d
=

ρ̄σu(ri, t)

∆t
. (43)

The total force from fluid interactions is then obtained by sum-

ming all individual contributions at every time step such that

G
j

fl
= (

∑

j g
j

bb
(ri) + g

j
c(ri) + g

j

d
(ri))∆x3, with the sum running

through all relevant lattice sites of each process.

A final correction due to the presence of colloids in binary

fluids involves the computation of Shan-Chen forces. As can

be seen in Eq. (17), the density of the neighbors of a given

site needs to be accessed to determine the pseudopotentials,

but right next to the particle, these might be inside the particle.

When solid sites are just considered to have no fluid, the result

is an artificial increase in the density next to the particle.22

To solve this problem, we use the methodology proposed by

Jansen and Harting22 and set the interface sites inside the parti-

cle to have a virtual fluid concentration equal to the average of

the fluid neighboring sites, ρ̄σ . No advection or collision steps

are performed on the virtual fluid sites. Nonetheless, these are

considered for Shan-Chen forces, balancing the forces at the

fluid side and thus preventing the formation of a high density

layer.22

FIG. 1. Scheme of the projection of a

particle, presented in 2D for simplic-

ity. The first column shows the perime-

ter of the particle and the lattice sites,

with white for fluid and black for solid

sites. The second and third columns

show the solid fractionψ(ri) and the ion

concentration n(ri), respectively. The

two rows show successive snapshots in

time. Created and deleted solid sites are

marked with a and b, respectively, and

the corresponding displacement of ions

is indicated with arrows.
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For the boundary conditions of the ion fluxes with the col-

loids, we follow an equivalent procedure as proposed by Kuron

et al.24 As in general, an electrical double layer is formed

around the colloids, where ion concentrations are considerably

larger than in the bulk, the displacement of charges due to the

creation and removal of solid sites leads to sudden electric field

variations, which result in large fluctuations of the particles’

velocities. In order to reduce these discretization effects, the

flux of ions is modified to take into account the volume fraction

covered by the particle at each site. The overall procedure was

inspired by Noble-Torczynski hydrodynamic boundary condi-

tions, which generalize the previously described bounce-back

procedure for sites that are partially filled by a solid.45 The

solid fraction ψs(ri) is determined at every lattice site, with

ψs = 0 for lattice site volumes that do not intersect with any

particle, and ψs = 1 for volumes completely inside a parti-

cle, that is, solid sites (see Fig. 1). For the cases of partial

overlap, the solid fraction is exactly given by the intersection

of a sphere with a cube of side length ∆x at the position of

the site ri. As there is no simple analytical solution for this

geometrical problem, ψ is approximated by subdividing each

lattice site h-times and counting the number ν of cubic central

points that are inside the spherical colloid. It then follows that

ψs = ν/(h + 1)3.

The ionic fluxes [Eq. (16)] are modified to take into

account the solid fraction field ψs such that at equilibrium,

the amount of ions at a site is proportional to the fluid fraction,

ψf = 1 � ψs. The fluxes then take the form

j±(ri+d/2) = −D

[
1

∆x

(

n±(ri+d)

ψf (ri+d)
− n±(ri)

ψf (ri)

)

cd

− β

4

(

q±(ri)

ψf (ri)
+

q±(ri+d)

ψf (ri+d)

)

(

E(ri) + E(r′i )
)

+
β∆µ±

2∆ρa∆x

(

n±(ri+d)

ψf (ri+d)
+

n±(ri)

ψf (ri)

)

× (

ρa(ri+d) − ρa(ri)
)

cd

]
ψf (ri+d)ψf (ri). (44)

The creation and deletion of solid sites has to also take

into account the ions present in the fluid. At the creation of a

solid site, ions are isotropically displaced to the fluid neigh-

boring sites. Although this might seem artificial, it is always

a relatively small amount of ions, as ψs ∼ 1 (see Fig. 1).

Moreover, it is the most straightforward method that is both

local and directly conserves ions. Similarly, when removing

a solid site, ions in the newly created fluid are simply set to

zero.

It is important to notice that as the colloid moves, the

number of solid sites it occupies is not constant; in order to

keep a constant and homogeneous charge on the colloid, we

redistribute Qi at every time step so that the colloidal charges

at each site qc(ri) = (Qi(ri)/vp)ψs(ri), with the particle volume

vp = (3/4)πr3
p .

Finally, the permittivity of the particles εp(r) also has to

be considered when solving Poisson’s equation. For sites that

are partially covered by the particles, we take a simple inter-

polation using the solid fraction field between the permittivity

of the fluids [already an interpolation depending on fluid con-

centration, as specified in Eq. (13)] and the permittivity of the

particles such that

ε(ri) = ε
p(ri)ψs(ri) + εf (ri)(1 − ψs(ri)). (45)

III. TEST CASES

A. Fluid-fluid interface

In this section, the ion distribution next to a planar fluid

interface is investigated. We validate the ion diffusive flux

and corresponding hydrodynamic force given by solvation.

Two different solvents are considered, which have different

Gibbs transfer energies ∆µ± , 0, as well as different per-

mittivities, εa
, εb. The results are compared with an ana-

lytical solution for ion distributions at interfaces derived by

Onuki.46 Bier et al. give a solution for the electrostatic poten-

tial of an interface at x = 0, with fluid a for x < 0 and b for

x > 0,47

φPB(x) =



φD − φD

A
eκax, x < 0,

φD − φD

A
[cosh(κix) + b sinh(κix)] , x ∈ [0, s] ,

φD

A
e−κb(x−s)p [b cosh(κis) + sinh(κis)] , x > s.

(46)

Here A = (1 + bǫ) cosh(κis) + (b + ǫ) sinh(κis); b =
√

εa/εb;

ǫ =
√

na/nb, with the subscript denoting the bulk values of

the respective solvent. The screening lengths are given by κa,b

= (2βe2na,b/ε
a,b)1/2 and at the interface κi =

√

2βe2nb/εa.

The potential difference between the two bulk phases φD

≡ φb � φa is the Donnan potential. The parameter s shifts

the potential as a way to capture interfacial effects,47 such as

a smoothly varying ε(x), present in our case.

Here and in all subsequent systems, we take the same

relaxation time for both fluids, τσ = 1.0∆t. Initial salt concen-

trations are given by nb/na = exp(�β∆µav) with ∆µav = (∆µ+

+ ∆µ�)/2. The system is taken to be quasi-one-dimensional,

{lx, ly, lz} = {500∆x, 4∆x, 4∆x}, and periodic so that there

are two identical interfaces at lx = 0 and lx = 250∆x. The

ion distributions are given by n±
PB

(x) = na exp[∓βeφPB(x)

− βµ±s (x)].46

Our simulations recover the predicted ionic concentra-

tions to within 2%, except next to the interface sites x ∈ [�5,

5]∆x, where the theoretical approximation of a sharp interface

breaks (see Fig. 2). The error increases linearly in the ∆µ± ∈
(1, 5)kBT range and stays below 5% also for cases with dif-

ferent permittivities, when the permittivity contrast χ ≡ (εa

� εb)/(εa + εb) ∈ (0, 0.9).

The same setup was previously considered by Roten-

berg et al.,17 where solvent/solvent interactions were mod-

eled using a free-energy based on the concentration field c(r),

instead of using Shan-Chen pseudopotentials as in this study.

In this respect, the most significant difference between the

two approaches is the equilibrium state of a demixed mixture.

While in our case there is a small but significant fraction of

the minority fluid at the bulk phases, the concentration field in

the free-energy formalism is truncated such that at the bulk,

it takes the perfectly demixed values, |c| = 1.17 Nevertheless,

the theoretical derivation of Onuki does not assume perfectly
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FIG. 2. Ionic density profiles n±(x) at a planar interface for ∆µ± = ±2kBT,

ξ = 0 (top) and ∆µ = ±2kBT, ξ = 0.5 (bottom). Insets show the relative error

between the analytic and numerical solution, |n± − n±
PB
|/n±

PB
.

demixed phases.46 In our case, agreement with the theoretical

predictions was found only for the solvation potential normal-

ized by the differences in concentration ∆ρa, as in Eq. (24).

When the expression in Ref. 17 is used, which assumes perfect

species separation, the convergent values of φPB(x = ±∞) are

not recovered, as the Donnan potential in that case does not

take the form (∆µ� � ∆µ+)/2e. We thus remark that the solva-

tion potential in Eq. (24) is a more general case that does not

assume perfect phase separation.

B. Dielectric droplet deformation

In the following test, a droplet of solvent b (oil) immersed

in solvent a (water) is considered in an external electric field

Ee = (0, 0, Ez). In the absence of an electric field, the balance

of surface tension and pressure determines the shape of the

droplet, which minimizes the surface area: a sphere in 3D, a

disk in 2D. When an external field is applied and the permit-

tivities of the solvents are different, the droplet can elongate

either in the direction of the applied field or perpendicular to

it, depending on the permittivity contrast. The final shape is set

by a balance between Laplace’s pressure and the Kelvin force

density. Notice that, as the system is ion-free, it allows us to

independently test the dielectric force applied to the solvents,

as in (29), the only non-vanishing term is the Kelvin force FE ,

Eq. (27).

As deformations are expected to be symmetric in the axis

of the field, as also to optimize the computation time, only

quasi-two-dimensional geometries are considered, by setting

lx = 4∆x, while ly = lz = l. The deformation δ is defined

as the normalized difference of half the droplet length in

the ŷ and ẑ directions, δ ≡ (b � a)/(b + a), with a in ŷ

and b in ẑ. For small deformations, the equilibrium shape

is an ellipse, and thus a and b correspond to the semi-

minor and semi-major axes, respectively. We compare our

results to the existing analytical solution in the limit of small

deformations,48

δth =
εard χ

2E2
z

4γ
, (47)

with rd being the undeformed droplet radius and γ being

the surface tension. The surface tension is obtained using the

Young-Laplace equation, ∆p = γ/rd , where the pressure dif-

ference ∆p is taken to be between the center of the droplet and

a point outside, computed from the equation of state of the

Shan-Chen model, Eq. (20). The size of the droplet and thus

δ is determined at sub-lattice resolution by fitting the local

concentration profile c(y, z) next to the droplet interface by a

hyperbolic tangent and defining the interface position as the

points where c = 0.

As in this configuration all electric forces, except for

dielectric, are zero, the degree of the deformation is deter-

mined by the relative magnitude of the electric forces to the

interfacial tension stresses, characterized by the electrocapil-

lary number CaE = ε
ardE2

z /γ. The predicted deformation can

thus be rewritten as δth = CaE χ
2/4.

Boundary conditions are taken to be periodic, and thus the

simulation can be considered to be of a square lattice of iden-

tical droplets. We study the system size dependency by con-

sidering two normalized droplet sizes, r̃d ≡ rd/l ∈ {0.1, 0.25},
for each system size l ∈ {64∆x, 128∆x}, corresponding to vol-

ume fractions ν ∈ (0.03, 0.2). Initially a circular oil region

is set to relax for 105
∆t, and each simulation is then run

from this equilibrated state for 2 × 105
∆t. Both the strength

of the applied field Ez and the permittivity contrast χ are

varied.

The droplet is seen to deform in the direction of the applied

electric field, as shown in Fig. 3(a). The effect of the differ-

ences in permittivity is evident when looking at the electric

field stream lines [Fig. 3(b)], which result in a dominant dielec-

trophoretic force at the poles of the drop in the ẑ direction

[Fig. 3(c)]. This force is eventually balanced by the increase

in surface tension due to the higher curvature of the deformed

droplet.

An excellent agreement between the computed deforma-

tion and δth is obtained for Ẽz < 0.1 and rd ≥ 30∆x (see Fig. 4).

(Here we have defined, for clarity, the dimensionless electric

field Ẽz = E/E0, with E0 = m0e
−1
∆x∆t−2.) In these ranges, the

normalized deformation is seen to be independent of Ẽz and

shows the expected quadratic dependence with χ. This depen-

dence breaks for Ẽz > 0.1 and high χ; we do not expect Eq. (47)

to be valid for these deformations. Smaller droplets show errors

within 15% even for small Ẽz, most probably as a consequence

of the finite-size diffuse interface. The results are consistent

with those obtained in Ref. 17, where the solvent’s interactions

are modeled through a free-energy model, in such a way that

the interface width and the surface tensions are parameters of

the system. In our case, both of these quantities are a result

of the Shan-Chen model, solely determined by the interaction

parameter G, and are measured from the resulting equilibrium

state.
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FIG. 3. (a) Contour lines of the concentration field c(y, z) = 0.0 (solid) and

c(y, z) = {�0.8, 0.8} (dotted), for Ẽz = 0.1. (b) Stream lines of E(r). (c) The

norm of the electric force 104 |Fe |. All fields are presented at different times,

t = 1∆t (left), and in equilibrium at t = 106
∆t (right), for χ = 0.9.

Increasing the electric field further leads to large elon-

gated droplets with pointed ends, as shown in Fig. 5. Similar

shapes have been observed in experiments for drops under

shear for low viscosity ratios between the two fluids.49 When

the field is turned off, the drops return to their equilibrium

shape, and no breakup is observed even for the highest Ẽz

considered.

FIG. 4. Deformation δ of a droplet for different permittivity contrasts χ and

dimensionless external electric field strengths Ẽz , normalized by the electro-

capillary number CaE . The size of the square container is l = 64∆x (filled

symbols) and l = 128∆x (empty symbols), for droplet size r̃d = 0.1 (top) and

r̃d = 0.25 (bottom). The solid line shows the analytic solution, Eq. (47).

FIG. 5. Contour line of the concentration field c(y, z) = 0.0 of a deformed

drop after the electric field is set to zero. Initially Ẽz = 1.5 and χ = 0.9. As

deformations are symmetric, only half of the system is shown.

C. Neutral electrolyte droplets

In the previous case, no ions were considered, the defor-

mation of the droplet being driven by the difference in per-

mittivity between the two fluids. In the following, ions are

added to the fluids, and the deformation of a drop in an

electric field is studied. Modifying the Gibbs transfer ener-

gies ∆µ± allows us to produce ratios of bulk ion concen-

trations between the two fluids of up to 100. At this limit,

we expect the influence of the ions in the outer fluid to

be negligible and therefore to be close to the most com-

mon experimental configuration where the drop’s fluid has a

much higher conductivity than the medium. In order to iso-

late the effects of the ions from other contributions, we take

both fluids to have equal permittivities, χ = 0, as well as

equal densities and relaxation times, implying equal viscosi-

ties. We investigate the qualitative aspects of the deformation

for variations in the average concentration n̄ = ∫ n(r)dr/lxlylz,

and Ez.

As the total electric force applied on the droplet now has

three contributions [cf. Eq. (29)], it is not evident that CaE

retains its relevance as it, for example, ignores the effects of

increasing ion concentrations, which increase the electrostatic

forces that lead to deformation.

We perform simulations of quasi-two-dimensional peri-

odic domains of size {lx, ly, lz} = {4∆x, 128∆x, 384∆x}. The

system is initialized with a circular droplet of fluid b of size rd

= 32∆x and a homogeneous ion concentration n̄ = 10−3
∆x−3.

We first perform a relaxation phase during 2 × 105
∆t with Ez

= 0, until diffusive fluxes vanish and the ion densities reach

an equilibrium distribution. The Gibbs transfer energies are

set to ∆µ± = �4kBT, which results in a ratio of bulk ionic

densities between the two species of nb/na ∼ 80. For sim-

plicity, we set equal permittivities on both fluids such that

ε
f
r = 80, with ε

f
r = εf /ε0. Comparing the measured Debye

length λD =

√

εf kBT/e2n̄ with experimental values known for

water gives ∆x = 1 nm, for ionic concentrations in the dilute

limit 10�3 mol/l.

Although we expect finite-size effects to be relevant, we

observe that the total electric field E at the boundaries is

much smaller than Ez, and thus the qualitative aspects are not

expected to be significantly altered by the domain size.

The electric field polarizes the drop as ions with differ-

ent charges move in opposite directions. As a consequence,
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FIG. 6. Contour line c(r) = 0.0 (black) for electrolyte droplets being deformed

under the action of external electric fields of different strengths. Also shown

are contour regions for q(r) = �10�3 e (red) and q(r) = 10�3 e (blue). As

deformations are symmetric, only half of the system is shown.

the electrostatic force, acting on opposite directions at each

pole, deforms the droplet, as shown in Fig. 6. For low Ez, the

drop elongates and reaches stable ellipsoidal shapes. Beyond

a critical Ez, the deformed drop becomes unstable, and after

acquiring a dumbbell shape, it breaks up in a pinch-off man-

ner.50 The morphology of the breakage varies with Ez: slow

elongations lead to round drop ends and thick connecting

necks, with no satellite drops formed at breakup. Higher veloc-

ities, for higher applied fields, lead to greatly deformed ends

perpendicular to the flow direction, a consequence of strong

fluid drag and dielectric forces pushing in opposite directions.

Capillary forces eventually break the slender neck, and two

or more satellite drops are formed. Overall the qualitative

aspects of the deformation and breakup coincide with pre-

vious experimental observations51 and numerical solutions of

leaky-dielectric models in various limits.50,52–54 Here we have

shown the capability of the model to study drop breakup in

electric fields; further studies could quantify the effects of

ion distributions at different concentration limits, providing

information unreachable by previous numerical methods that

assume all charges to be at the interface.55 Future quantita-

tive studies should also take into account the known depen-

dency of the degree of deformation and breakup on the grid

resolution.56

D. Charged droplets

We now look at the deformation of droplets with a non-

zero electric charge. A quasi-two-dimensional periodic box of

size {lx, ly, lz} = {4∆x, 384∆x, 384∆x}with a droplet of radius

rd = 32∆x is considered. The same relaxation procedure as in

the previous system leads to the droplet having a negative net

charge, when setting different Gibbs transfer energies for the

two ion species ∆µ± = ±4kBT. The concentration of ions is

fixed at n̄ = 10−3
∆x−3, which sets the average charge in the

droplet at q̄d ∼ −3×10−3 e. The permittivities are set as in the

previous systems, εr = 80. We vary the electric field Ez.

As expected, drops accelerate in the direction of the elec-

trostatic force qE. Eventually they either reach a terminal

velocity with an equilibrium deformed shape or go through a

breakup process. Initially the spherical shape widens perpen-

dicular to the direction of flow, acquiring an oblate spheroidal

shape.57 Afterwards, the drop bends, acquiring a bell-like

shape with lobules at the ends connected by an increasingly

long and thin neck, as shown in Fig. 7. The ultimate breaking

process is analogous to pinch-off, when surface tension forces

break the thin neck. Depending on the strength of the field,

at breakup, the neck either withdraws to the end lobules, in

which case only two drops are produced [Fig. 7(a)], or breaks

up further into smaller drops, a situation seen for the highest

Ez considered [Fig. 7(b)].

Deformation and breakup are a result of hydrodynamic

forces due to the relative velocity of the drop with the ambient

fluid.58 Previous studies of macroscopic drops and/or bubbles

often refer to this process as secondary atomization, secondary

breakup or droplet disintegration.58,59 We observe that the

breakup process for a charged droplet in an electric field

is similar to the bag-breakup process known from previous

experiments and numerical simulations of drops or bubbles

flowing in either a fluid or a gaseous medium. After initial

deformation, the center of the drop gets pushed downstream

forming, in three-dimensions, a bag attached to a toroid. In

FIG. 7. Contour line c(r) = 0.0 (black), for electrolyte droplets being

deformed under the action of an external electric field Ẽz = 0.07 (a) and Ẽz

= 0.1 (b). Also shown are contour surfaces of the total charge q(r). To sim-

plify the visualization, the z-direction is shown relative to the center of mass

of ρb, zc.
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our two-dimensional case, the analogous situation is of the

observed neck connecting two separate lobules. Eventually

the bag breaks and is observed to fragment into a number

of smaller drops.58,59 We observe fragmentation only for the

highest electric fields (see Fig. 7), most probably as a conse-

quence of the resolution limiting the size of smaller drops. In

this last case, the bag is observed to create a plume at its cen-

ter, most probably a precursor of a breakup process referred

to as multimode breakup in experiments which, consistently,

is seen to occur when increasing the forcing beyond bag

breakup.58

The similarities of charged and uncharged phenomenolo-

gies can be further supported by considering the observed

invariance of the breakup process with two dimensionless

numbers: the Weber number, defined as the ratio of iner-

tia to surface tension, We = ρau2
d
rd/γ, with ud the termi-

nal velocity of the drop; and the Ohnesorge number, taken

as the ratio of the drop’s viscous to surface tension forces,

Oh = ηa/
√
ρardγ. In our systems, Oh ∈ (0.1, 1.0) and We

∈ (10, 30). At these values, various experimental studies have

found the breakup process to be at either the bag or multimode

type.58,59

Until now only quasi-two-dimensional systems have been

considered, as the deforming droplets were always expected to

be axisymmetric in the direction of the applied field. We wish

to remark that our numerical implementation is performant

enough to simulate three-dimensional systems of the cases

previously presented. We realized individual simulations of

selected cases and always observed qualitatively equivalent

behaviours. As an example, we show in Fig. 8 the break-

up process of a charged droplet of size rd = 64∆x, with

parameters as in Fig. 7(b), in a periodic cube of side length

l = 384∆x. In this geometry, one can clearly see how the

elongated-disk drop breaks initially at its center, forming a

toroid. Negative charges, initially forming a spherical double

layer, are quickly accumulated at the front of the droplet. The

fluid flux also significantly advects the charges through the

outer and inner (after breakup) sides of the drop. Overall, the

breakup process is consistent with the quasi-two-dimensional

drops.

In summary, we conclude that the effect of the double

layer on the dynamics of breakup is not highly significant

in this parameter range, as the drop breakup process is to a

large extent analogous to a non-charged drop deformed under

the effect of hydrodynamic forces. Nevertheless, we do not

expect this to be the case for other salt concentration limits.

In general, we have shown that our numerical methodology is

capable of capturing the qualitative aspects of this process in

the right order of the relevant dimensionless numbers. Future

studies could systematically vary the concentration of ions to

quantify the influence of electric forces on drop deformation

and breakup.

E. Colloid electrophoresis

In the following sections, electrokinetic colloidal suspen-

sions are studied. In order to validate the coupling of the

colloidal particles to solute and solvents, we first consider the

basic electrophoretic setup in which a single, charged parti-

cle moves in an electrolyte solution under the effect of an

electric field. We compare our results with experimental mea-

surements60 and lattice Boltzmann simulations.61 In the latter

study,61 the link-flux method was used to solve the electroki-

netic equations in a similar manner as in the present study

although, importantly, only fixed particles were considered,

while in our case, the particles are free to move.

The velocity at which a colloidal particle with charge Q

moves in a weak electric field is linear with E, with the propor-

tionality constant referred to as the electrophoretic mobility µ

= v/E. A colloidal particle is usually surrounded by counter-

ions (ions with a total charge �Q), which create an electric

field opposing the movement of the particle. The charges on

the colloid and the cloud of counter-ions are referred to as

double layer. The rest of the electrolyte ions in the solution,

referred to as salt or co-ions, increase the drag on the particle

and decrease the electric field, thus reducing the mobility µ of

the particle relative to the case with no salt.62 The theoretical

derivation of µ as a function of the charge of the particle Q,

the salt concentration and, in the case of solutions, the solid

fraction η is not trivial and has been done only for the lim-

iting cases of small or large double layer thickness.62 In the

following, we validate our simulations by comparing µ with

previous numerical work and experiments, usually realized at

the mili- or microscale.

A single colloid of radius rp = 4.0∆x is situated in a

periodic box of size l. Due to the use of periodic boundary

conditions, the system can be considered as a cubic colloidal

crystal of solid fraction η = (4/3)πr3
p/l

3. We modify the solid

fraction by varying l ∈ (24, 128)∆x, that is, ν ∈ (10�4, 10�2),

and set the material parameters as in previous experiments and

simulations:60,61 colloid charge Q = 30 e and a Bjerrum length

λB = e2/(4πεkBT ) = 1.3∆x. The permittivity of the fluids and

particles is set such that ε
f
r = 80 and ε

p
r = 10.

Good agreement is observed with the previously mea-

sured dependency of the electrophoretic mobility with the

solid fraction, µ(ν), as shown in Fig. 9. As in previous works,

we have expressed our results using the dimensionless mobil-

ity µ̃ = 6πηlBµ/e. Consistent deviations with experimental

values increase with the applied field although they remain

within a 5% error for Ẽz ∈ (10�4, 10�2). We expect the

FIG. 8. Snapshots of a charged drop

being deformed in an electric field,

showing the drop interface, c(r) = 0.0

(green), and contours for the charge con-

centration q(r) = {1 e, 2 e, 3 e, 4 e}
× 104 (yellow to red). Here rd = 64∆x,

∆µ± = ±4.0kBT, n̄ = 10−3
∆x−3, and

Ẽz = 0.07.
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FIG. 9. Dimensionless electrophoretic mobility µ̃ as a function of the solid

fractionν, for a colloidal particle of size rp = 4.0∆x and charge Q = 30 e. Also

shown are experimental data for suspensions of latex particles of diameter

64 nm in a fluid (+) or crystalline (×) state, as detailed in Ref. 60. Furthermore,

data are shown for simulations using a lattice-Boltzmann/molecular dynamics

combination as described in Ref. 60, for particles of total charge Q = 20 e and

radius 4∆x (⊳), and Q = 30 e and radius 6∆x (⊲). Finally, data for simulations

using an equivalent algorithm as this study, although with fixed particles, are

also included (□).61

deviations at high forcing to be a consequence of the fluid ter-

minal velocity being close to cs, namely, Ma ∼ 1, where many

of the model assumptions are no longer valid. On the other

hand, for very low fields, Ẽz = 10�4, the very low velocity of

the colloid is significantly affected by discretization effects,

not only due to flux of ions but also due to the hydrodynamic

boundary conditions. These generate large fluctuations in µ (as

can be seen by the error bars in Fig. 9) although the average

remains consistent with previous studies for ν > 10�2.

F. A particle at a fluid interface

As final exemplary cases for the possibilities of the numer-

ical method, particles at interfaces of electrolyte solutions

are studied. We begin by considering the behavior of a sin-

gle particle at a planar fluid interface and afterwards show

the possibility of simulating colloidal suspensions on the sur-

face of droplets. These cases represent common scenarios of

scientific and technological relevance. Nanoparticles at fluid

interfaces are common in various in-development technolog-

ical advancements, such as advanced coating processes for

molecular electronics and optical devices,63,64 stabilization

of emulsions65 or better control, and transport capabilities in

micro- and nanofluidic devices.66

Colloidal particles at fluid interfaces are highly stable,

as the particle-oil and particle-water surface tensions are in

most cases much smaller than the oil-water one. Although the

energy needed for detachment of the interface scales quadrat-

ically with the radius of the particle,67 at the nanoscale the

energies needed for detachment are still 10-100 times larger

than kBT.68,69 Therefore we ignore, as a first approximation,

temperature fluctuations.

A single particle of radius rp = 8∆x is placed at a fluid

interface in a periodic box of size l = 64∆x. The radius of

the particle was chosen to minimize the effects of the finite

width of the interface. As the system is periodic, the setup is

equivalent to an infinite crystalline colloidal suspension with

solid fraction ν = 8 × 10�3. The interface without the colloid

is previously relaxed for 105
∆t such that the concentration

of ions, initially homogeneously set to n(r) = n̄, reaches an

equilibrium distribution given by the different Gibbs transfer

energies ∆µ±. These are fixed at ∆µ± = 4.0kBT. Permittivities

are set as in the single colloid electrophoresis case, ε
f
r = 80

and ε
p
r = 10. We vary n̄ and the charge of the colloid Q and

measure the displacement of the colloid from its equilibrium

position with no solutes, z∗
0
, z∗ = |zc − z∗

0
|.

The displacement of the particle is seen to increase linearly

with n̄, as shown in Fig. 10. At a critical salt concentration, the

ion’s osmotic pressure is strong enough to detach the particle

from the interface. Close to this limit, the linear behavior is

lost, and the displacement saturates, probably an effect of the

steep interface deformations interacting with the discretized

particle shape.

The equilibrium position of a particle at a fluid interface

is usually quantified by the contact angle θc. This is the angle

formed by the tangent of the interface and the tangent to the

particle at the triple contact point. We observe θc to be indepen-

dent of the displacement of the particle. This is to be expected,

as the wetting properties of the particle have not been modi-

fied, and even though the particle has displaced, the interface

deforms in such a way that θc is kept constant, θc = 90◦ in

our case. In addition, we wish to remark that having access

to θc in experimental situations at the nanoscale can present

a significant challenge. More commonly the apparent contact

angle θa is measured, formed by the tangent of the interface

at the triple contact point with the horizontal. In that case, we

naturally observe a variation with salt concentration, as sin(θa)

= z
∗
/rp.

Surprisingly we see no strong effect of the charge of the

particle in z∗
0
, for all considered charges and salt concentra-

tions. As shown in Fig. 10, charged particles generate a double

layer, with most of the charge concentrated on the conducting

side. Nevertheless, the resulting electrostatic force is observed

to be at most an order of magnitude lower than both the

ions osmotic pressure and the solvation forces. As the total

concentration of ions around the particle is mostly

FIG. 10. Relative equilibrium position of a colloid at a fluid interface, nor-

malized by its diameter, shown as a function of the salt concentration n̄, for

different colloid charges Q = 1 e (□) and Q = 10 e (⊲). The solid line shows

a linear dependency. The snapshots show the interface position c(z) = 0 as a

solid line, the particle in gray, and the contours of concentration of charges,

normalized the maximum charge in each case, for the limit cases indicated by

the arrows and Q = 10.
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independent of Q (the increase in negative ions next to the

colloid compensates the loss of positive ions), the total elec-

tric force Fe only slightly varies with Q, and therefore the

equilibrium position is only marginally affected.

In summary, we have briefly shown the possibility of

studying nanoparticle adsorption at fluid interfaces with

resolved charge distributions, using the presented numerical

methods. Future studies could explore the stability of the par-

ticle as a function of electrolyte ion concentration, particle

charge, and the possibility of higher control using an exter-

nal electric field. Research in this direction could help us

to improve our understanding of electrodipping forces at the

nanoscale,70,71 a necessary step to obtain a general interaction

potential for particles at fluid interfaces.

G. Colloid coated droplets

Finally we demonstrate the possibility of simulating the

dynamics of colloidal suspensions adsorbed at curved fluid

interfaces, such as the surface of a droplet. Colloid-coated

droplets are present in many physical and chemical processes.

In Pickering emulsions, the coating of droplets by colloids

can stabilize emulsions without the need of surfactants. Emul-

sions can then be used as templates for fabrication of capsules

composed of colloids: colloidosomes.65,72,73 Colloidosomes

can be functionalized as containers of different substances,

such as drugs, general reagents, or even cells, with several

potential applications in the food, biomedical, and petroleum

industries.73

In this case, we consider a droplet of radius rd = 32∆x

covered by a homogeneous suspension of particles of size

rp = 5∆x. The droplet parameters are identical as for the

deforming charged droplets studied Sec. III B, as we wish to

investigate the influence of the particles in the overall deforma-

tion of the droplet. For simplicity, we consider all particles to

be uncharged, Qj = 0. The total number of particles is N = 80,

which gives a covering fraction of νs = (1/4)Nr2
p/r

2
d
≈ 0.48.

Permittivities are set as in the previous cases, ε
f
r = 80 and

ε
p
r = 10.

The effect of the covering particles on the deformation

and breakup morphology of the droplet is dramatic. While

without colloids, the droplet underwent a process similar to

bag breakup (see Fig. 8), in this case, the breakup process

is more similar to pinch-off: the drop deforms and squeezes

through the particle coating, forming a long neck until it even-

tually breaks, as shown in Fig. 11. The results are the creation

of a new, particle-free droplet, and the increase of νs in the

original droplet such that it is now stable in the electric field.

Including corrections to take into account the overlapping ion

clouds at small distances would certainly reduce the equilib-

rium packing fractions although we expect to observe the same

qualitative dynamics. Due to the increased inertia of the coated

droplets, their speed is considerably slower than the particle-

free ones so that drag forces do not significantly deform its

shape. Overall we see phenomena worthy of future studies

which might have practical significance, as the covering frac-

tion of coated droplets could be increased by applying an

external electric field and thus removing the excess fluid from

the drop.

FIG. 11. Snapshots of a particle-coated charged droplet in an electric field.

Parameters are identical as in Fig. 8, with rp = 5.0∆x. The drop interface c(r)

= 0.0 (green) and colloids (white).

IV. CONCLUSIONS

A mesoscopic model for the simulation of electrokinetic

phenomena of colloidal suspensions in fluid mixtures at the

nanoscale was presented. The model follows a more micro-

scopic description than the link-flux model originally pro-

posed by Capuani et al., treating the kinetics of the ions as

a response to individual forces instead of using a free-energy

functional, and deriving the coupling between the different

species using local pseudopotentials. Overall we have shown

that binary mixtures of electrolytes can be successfully mod-

eled using the Shan-Chen multicomponent pseudopotentials

for both fluid-fluid and fluid-ion interactions, providing a

new, simple methodology for the simulation of such systems.

Colloids are included via a Ladd coupling with the fluids,

and a solid-fraction scheme of discretization that significantly

reduces discretization errors. Results were shown to be con-

sistent with the previous link-flux method, and agree with

known theoretical solutions for ionic concentrations at fluid

interfaces, droplet deformation and electrophoresis of a single

colloid.

Several systems were shown to explore the possibilities

of the model. Droplet deformation and breakup for neutral and

charged droplets presents the same qualitative aspects as pre-

vious numerical and experimental studies at the microscale.

The ability to integrate particles and fluid mixtures opens the

possibility to study at a new level of resolution the statics and

dynamics of colloids at interfaces, both planar and curved.

Our first investigations show that colloids at a planar elec-

trolyte interface vary their equilibrium position when ions

are added to one of the fluid, until the point were adsorp-

tion becomes unstable and the particle detaches. Furthermore,

it is now possible to study (charged) colloidal suspensions

adsorbed at the surface of a droplet; we have here shown

a first exemplary case of a colloid-coated droplet breakup

due to an external electric field. All these examples illustrate

that the presented method can be used for studies of a vari-

ety of electrokinetic phenomena in parameter ranges so far

unreachable.

This description of ion transport in electrolytes could be

easily extended to include other effects. Additional forces

acting on the ions can be readily added in Eq. (10), with

the ion-solvent coupling force following directly from the

friction coupling. More involved extensions beyond the

Poisson-Boltzmann limit of no ion-ion interactions or

solvent polarization, could include the use of modified

Poisson-Nernst-Planck (MPNP) equations that take steric
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effects into account.74 These could be included as additional

terms in the ion flux, Eq. (9), and are possibly crucial in con-

fined systems at high ion concentrations or strong external

fields.74

In summary, our work has shown that mesoscopic simu-

lations can be used to study electrokinetic phenomena at the

nanoscale, where obtaining experimental data become a chal-

lenge. The same algorithm could be applied to a variety of

nanofluidic systems, such as droplet transport in inhomoge-

neous geometries, coalescence and generation of droplets, and

nanomixers.
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the Jülich Supercomputing Centre and the High Perfor-

mance Computing Centre Stuttgart for the technical sup-

port and the allocated CPU time. We further thank Peter

Coveney, Gary Davies, Giovanni Giupponi, Oliver Henrich,

Christian Holm, Florian Janoschek, Timm Krüger, Michael
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